If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=7-20y
We move all terms to the left:
3y^2-(7-20y)=0
We add all the numbers together, and all the variables
3y^2-(-20y+7)=0
We get rid of parentheses
3y^2+20y-7=0
a = 3; b = 20; c = -7;
Δ = b2-4ac
Δ = 202-4·3·(-7)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-22}{2*3}=\frac{-42}{6} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+22}{2*3}=\frac{2}{6} =1/3 $
| -46=-2x-10 | | -5n-5=7n+21 | | -2y-12-6y=4y+12 | | 3(m+6)=6(m-1 | | -219=-3+8(1-4a) | | 8m(m-3)=-128 | | r=721 | | -3.8g+5+2.7g=12.7g | | -0.5=p/10 | | 3x+9-8x6=62/3 | | 5x10=5x-19 | | 4x10=4x+10 | | 10/3=10/o | | 5n-5=7n+21 | | 3/10=10/p | | 8−8f=-9f | | 50/10=10/p | | (D^4-2D^3-6D^2-18D-135)y=0 | | T=8.5d | | -4−h=6−2h | | 2(x+6)-12=18 | | x+18=9x+6=2x+23=7x-2 | | 6s=60*4 | | 10/50=10/p | | 10/50=10p | | 4(5x−4)+x−1= 88 | | 2q+10=-10−8q | | 2(24+2x)=x+48 | | 3/6=n/7 | | 3(8-2)-5x=9 | | -8u=5−9u | | 71-y=266 |